The Race to Eliminate Tuberculosis

Jason E. Stout

Tuberculosis is a major cause of morbidity and mortality worldwide, but the number of cases is now lower than ever before, both in the United States and in North Carolina. Although case rates are declining, public health funding for tuberculosis is also declining; it remains to be seen whether tuberculosis will be successfully eliminated or whether it will reemerge in the United States.

Tuberculosis is the model of a disease that can only be successfully controlled through the integration of public health practice and individual health care. The responsible organism, Mycobacterium tuberculosis, is an obligate pathogen in humans—that is, it requires a host for growth and reproduction, and it must cause disease in order to be transmitted. It is transmitted from person to person via the respiratory route when an individual with pulmonary disease coughs, speaks, breathes, or sneezes. After transmission, disease occurs in a minority of infected persons, and progression to disease can be prevented with appropriate treatment. In theory, the cycle of transmission and progression to active disease can be broken by appropriately identifying and treating both ill individuals and those with latent infections, which would eventually result in disease elimination.

In the United States, vigorous public health efforts over the past 20 years have been directed toward breaking this cycle. Many states, including North Carolina, have eliminated barriers to appropriate tuberculosis treatment by providing free medications to all infected persons. In addition, local health departments routinely identify and test contacts of persons with infectious tuberculosis, thus identifying newly infected individuals (who have latent infections but are at relatively high risk to progress to active tuberculosis) and offering treatment to prevent future disease. These efforts require significant investment of resources; a large 2006 study estimated that in 2002 alone, between 291,000 and 433,000 persons were started on treatment for latent tuberculosis infection [1]. Investment of these resources seems to be paying off; the authors of the study estimated that 4,000 to 11,000 future cases of active tuberculosis were prevented because of this treatment. In fact, the number of tuberculosis cases reported in the United States in 2012 (211 cases; incidence rate, 2.2 cases per 100,000 population), ranking North Carolina 29th among states in terms of incidence rate and 13th in terms of number of cases (Kitty Herrin, personal communication). In addition, the levels of drug-resistant tuberculosis have remained at relatively low levels. In 2011, the most recent year for which data were available, 127 cases of multidrug-resistant tuberculosis were reported in the United States [2], 2 of which were in North Carolina [3].

Although these statistics are encouraging, it is premature to declare victory in the war on tuberculosis—as has mistakenly been done before, with disastrous consequences. Tuberculosis is still being actively transmitted in North Carolina, particularly among disadvantaged minority populations. This disparity is most clearly seen in children with tuberculosis, many of whom have been recently infected. A study performed a decade ago found that, of children reported to be infected with tuberculosis in North Carolina during the period 1994–2002, 88.3% were nonwhite [4]; information in the North Carolina Electronic Disease Surveillance System database indicates that over the subsequent decade (2003–2012), that percentage remained essentially unchanged at about 89% [5]. Tuberculosis case rates are significantly higher among nonwhite populations than among whites both in North Carolina and in the United States as a whole. In 2012 the case rates among Asians, blacks, and Hispanics in the United States were 25.0, 7.3, and 6.6 times higher than the rate among whites, respectively [2].

Much of this health disparity is driven by the increasing proportion of tuberculosis cases attributable to foreign-born persons (imported tuberculosis). In 2012 a record 63% of all reported tuberculosis cases in the United States among individuals whose national origin was known occurred in persons who were foreign-born [2]. In North Carolina, foreign-born individuals accounted for 46% of all reported cases of tuberculosis [5]. These foreign-born cases usually represent infection in the country of origin, followed by reactivation after immigration to the United States. Given that more than 1 million immigrants enter the United States every
year [6], tuberculosis will never be eliminated in this country as long as the disease remains prevalent in the rest of the world.

Continued investment of resources will clearly be needed to prevent a resurgence of tuberculosis in the United States, but these resources may be in jeopardy. Funding provided by the Centers for Disease Control and Prevention (CDC) to state and local tuberculosis control programs has been reduced every year for the past several years. Many state and local government budgets have faced fiscal pressures that in turn put pressure on public health programs. In addition, some of the key tools of tuberculosis control have been limited in recent years. In the past year alone, shortages of key drugs such as isoniazid, amikacin, and intravenous rifampin have been reported [7, 8]. These shortages have resulted in rationing of therapy and delay in initiating treatment of latent tuberculosis [9]. Furthermore, a shortage of the purified protein derivative (PPD) used for the tuberculin skin test has impaired clinicians’ ability to screen exposed persons and identify those who are infected and would benefit from treatment of latent tuberculosis [10]. In the face of these shortages, a cynical observer might comment that tuberculosis statistics will continue to improve simply because we cannot detect the infection, due to the lack of PPD, and that we do not have the drugs to treat the disease if we do detect it.

In addition to resource constraints, tuberculosis control may fall victim to its own success. The decline in tuberculosis incidence translates to a decline in clinician experience with the disease, which may result in failure to recognize tuberculosis when it is encountered. Recent evidence supports a link between low levels of clinician experience with tuberculosis and delayed diagnosis. An examination of US surveillance data led to a 2009 report indicating that the
proportion of tuberculosis patients with advanced pulmonary disease (indicated by positive acid-fast smears with cavitation) steadily increased during the period 1993–2006 [11]. Furthermore, the proportion of tuberculosis patients with advanced disease in a given county was increasingly associated with a lower rate of tuberculosis disease in that county, which is particularly problematic because advanced disease is associated with greater infectiousness, and latent disease may be underreported or undetected. Delayed diagnosis of cases in low-incidence areas where providers and patients are less likely to be familiar with tuberculosis may easily lead to local outbreaks and a resurgence of the disease. Creative strategies, including targeted education of providers and high-risk populations, will be needed to prevent the erosion of previously achieved gains in tuberculosis control.

New technologies may help to facilitate continued progress toward tuberculosis elimination (Table 1). Rapid, sensitive, and specific techniques for diagnosing active tuberculosis are essential to reduce diagnostic delay and to increase the likelihood that appropriate treatment will be initiated in a timely fashion. Such techniques are particularly needed as clinical expertise declines and clinicians become less comfortable initiating empiric antituberculous treatment. Unfortunately, standard rapid diagnostic tests (nucleic acid amplification) are challenging to implement from a quality assurance and cost-effectiveness perspective when the number of tests performed is low. Referral laboratories may process enough specimens to make offering such tests feasible, but the delay inherent in sending specimens to referral laboratories and receiving results reduces some of the benefit of rapid testing.
TABLE 1.
Tests for Detecting Mycobacterium tuberculosis Infection

<table>
<thead>
<tr>
<th>Type of test</th>
<th>Test name(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular test for M. tuberculosis and rifampin resistance</td>
<td>Cepheid GeneXpert test (Xpert MTB-RIF)</td>
<td>• The test has excellent sensitivity and specificity. • Many laboratories already have the machine required to run the test. • The test requires minimal technician time and expertise. • The test provides simultaneous detection of M. tuberculosis and rifampin resistance.</td>
<td>• This assay is currently offered by only a few laboratories.</td>
</tr>
<tr>
<td>Tuberculin skin test</td>
<td>• The test is inexpensive to perform. • Providers are familiar with the test. • There are extensive data supporting a relationship between a positive test result and the patient’s likelihood of developing active tuberculosis in the future.</td>
<td>• A second visit is required to read the test. • Inter-reader reliability is poor. • There is a potential for false-positive test results due to cross-reactivity with the BCG vaccine and environmental nontuberculous mycobacteria.</td>
<td></td>
</tr>
<tr>
<td>Interferon-gamma release assays</td>
<td>(1) QuantiFERON-TB Gold In-­Tube test (2) T-­SPOT.TB test</td>
<td>• Both tests are commercially available in the United States. • These tests require only a single blood draw to obtain a result. • These tests should have a lower likelihood of false-positive results compared with the tuberculin skin test. • These tests eliminate the need for personnel who are experienced in reading tuberculin skin tests.</td>
<td>• These tests are significantly more expensive than the tuberculin skin test. • These tests are associated with significant biological and laboratory variability that may confound interpretation.</td>
</tr>
</tbody>
</table>

Note. BCG, bacille Calmette-Guerin.

The Cepheid GeneXpert test (Xpert MTB-RIF), an automated molecular test for M. tuberculosis and resistance to rifampin, may overcome some of these barriers. In international studies in tuberculosis-endemic areas, this test demonstrated excellent sensitivity and specificity [12]. This test is attractive in low-incidence settings where the volume of tests performed in laboratories is low. First, many laboratories already have the (expensive) machine required to run the test, as the same machine is used for other commonly ordered tests—such as rapid detection of methicillin-resistant Staphylococcus aureus, Clostridium difficile, and vancomycin-resistant Enterococcus species. Second, the test requires minimal technician time and expertise to perform. Third, the test provides simultaneous detection of M. tuberculosis and of rifampin resistance; the latter is a good marker for multidrug-resistant tuberculosis, which requires a different therapeutic approach.

A second relatively new technology that may help in domestic tuberculosis control is the interferon-gamma release assay. Two such assays are commercially available in the United States: the QuantiFERON-TB Gold In-­Tube test and the T-­SPOT.TB test. These assays, which measure an in vitro immune response to M. tuberculosis–specific antigens, have several advantages over the tuberculin skin test. First, they require only a single blood draw to obtain a result, compared with the 2 office visits needed to perform and interpret a tuberculin skin test. Second, the antigens used in these tests are not present in either the bacille Calmette-Guérin (BCG) vaccine or in most nontuberculous mycobacteria, which should reduce the likelihood of false-positive results compared with the tuberculin skin test. Third, these assays eliminate the need for personnel who are experienced in reading tuberculin skin tests. However, the interferon-gamma release assays are not a panacea. They are significantly more expensive than the tuberculin skin test, do not discriminate between latent and active tuberculosis (neither does the skin test), and have significant associated biological and laboratory variability that may confound interpretation. The CDC recommends use of these tests instead of the tuberculin skin test [13], but the role of these tests in public health practice and tuberculosis elimination remains to be fully determined.

With carefully targeted provider education, new technologies, and sustained support for public health infrastructure, we will continue to make progress toward tuberculosis elimination. Complacency has the potential to undo the work of many decades, and we must remain focused on the core tasks of diagnosing, treating, and preventing tuberculosis, both in the United States and abroad. In 2011 there were an estimated 8.7 million new cases of active tuberculosis in the world, including nearly half a million cases of multidrug-resistant tuberculosis, and there were 1.4 million deaths from tuberculosis [14]. Eighty percent of new tuberculosis cases occur in just 22 high-incidence countries [14]. Given the number of immigrants who enter the United States every year, as well as the not-insignificant burden of tuberculosis among nonimmigrant visitors, our attention must be broader than the confines of our borders. A provocative cost-effectiveness analysis published in 2005 [15] suggested that investing resources in tuberculosis control abroad would provide a greater reduction in US tuberculosis cases than would investing similar resources to detect and treat latent
tuberculosis infections after immigrants enter the United States. As the saying goes, tuberculosis anywhere is tuberculosis everywhere, and we must remain vigilant if we are to see an end to this scourge. NCMJ

Jason E. Stout, MD, MHS associate professor of medicine, Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, and tuberculosis medical director, North Carolina Department of Health and Human Services, Raleigh, North Carolina.

Acknowledgements

Financial support. J.E.S. receives grant support from the National Institutes of Health (AI069484) and the Centers for Disease Control and Prevention (Tuberculosis Trials Consortium and Tuberculosis Epidemiology Studies Consortium). He receives salary support from the North Carolina Tuberculosis Control Program and from Wake County Human Services.

Potential conflicts of interest. J.E.S. receives grant support from JHP Pharmaceuticals (manufacturer of Aplisol). He has also received consulting fees from UpToDate, Exxon-Mobil, and Novella Pharmaceuticals.

References


NCMJ VOL. 74, NO. 5
ncmedicaljournal.com